点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:凤凰快三|凤凰快三
首页>文化频道>要闻>正文

凤凰快三|凤凰快三

来源:凤凰快三2024-02-10 17:48

  

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

凤凰快三

非遗有新人 | 吴灵姝:草木本心 布上青花******

  【开栏语】

  习近平总书记对非物质文化遗产保护工作作出重要指示强调,要扎实做好非物质文化遗产的系统性保护,推动中华文化更好走向世界。即日起,荔枝新闻推出双语微纪录片《非遗有新人》第二季,追寻千年文脉的足迹,讲述薪火相传的故事,感知国潮风起的澎湃,让非遗在新时代绽放新光彩、闪耀全世界。

  “青,取之于蓝,而青于蓝。”

  不同于锦缎的华贵明艳,蓝印花布自有一份沉静清雅的美好,素朴明净的意蕴,凝结的是百姓的生活向往,承载的满是民风民俗的温情。张仃赞其“有一种清新之气,自由之气,欣欣向荣之气”。

  南通滨江临海,素来盛产棉花。时至明清,又逢蓝草遍植崇川福地,染坊遍布乡间集镇。蓝印花布在此得以繁盛,形成了“衣被天下数百年”的景象。历经岁月沉浮,蓝印花布虽盛况难再,却依然在这里代代传承下来,南通也被称为“中国蓝印花布之乡”。吴灵姝就在这里长大,如今也从父亲手中接过了传承蓝印花布技艺的接力棒。

  蓝白之韵,人生底色

  土生土长的南通姑娘吴灵姝,从小便浸染在这质朴素雅、蓝白交织的世界之中。对于小灵姝来说,印象最深的莫过于奶奶演示纺纱织布的娴熟手法和父亲终日围着蓝印花布的忙碌身影。

  父亲吴元新自16岁进入印染厂工作开始,就与蓝印花布正式结缘,在守护蓝印花布的道路上行且愈坚。1996年,吴元新更是辞去工作,一头扎入蓝印花布博物馆的创建之中。这是一条抢救蓝印花布的艰辛道路,同时间赛跑的吴元新很难抽出时间好好陪伴女儿。小灵姝对此很是不解与委屈,蓝印花布都在生活中被淘汰了,为什么父亲却把所有的时间都给了它呢?蓝印花布难道是父亲的儿子吗?

  “蓝印花布不是我的儿子,是你爷爷的爷爷的爷爷,它最大,你懂吗?”这是父亲的回答。尽管似懂非懂,但吴灵姝却是深深地记住了这句话。大抵在这时,小小的蓝白花种已悄然撒进吴灵姝心间,只待日后破土开花。

  “其实,蓝印花布对于那时的我来说是熟悉而陌生的。”吴灵姝坦言幼时并未系统学习蓝印花布技艺。但在父亲的引导下,吴灵姝从小就培养出了对绘画的兴趣,练就了扎实的技能。这也为吴灵姝日后学习蓝印花布技艺打下了坚实的基础,为布上青花的灵动绽放积淀了养分,为靛蓝人生的自由起舞积蓄了力量。

  大学时期,吴灵姝学习的是设计专业,心中的蓝白花种在滋养中破土。吴灵姝有更多机会去了解传统文化与工艺,也愈加体会到蓝印花布的魅力。大三在韩国建国大学交换时,吴灵姝在图书馆翻阅传统印染的书籍,蓝印花布的介绍跃入眼前。刹那间,自豪、激动与喜悦交织,吴灵姝在第一时间给父亲打电话分享。这一次与蓝印花布在异国他乡的遇见,更让吴灵姝清晰看见蓝印花布的价值。

  在北京上学的吴灵姝最初曾考虑留在北京,首都天地广阔,亦能为蓝印花布的传扬做贡献。但得知女儿这一想法的吴元新,很是忧心:如果深受家学陶冶的女儿不能潜心传习蓝印花布技艺,这一门技艺恐难有后继。吴元新遂求援于冯骥才、韩美林等大家。受到各位名家的真诚鼓励,更深感父亲多年坚持的不易,吴灵姝在完成研究生学业后,最终做出了回到南通,跟随父亲从头学习蓝印花布技艺的决定。

  布上青花,清丽绽放

  蓝印花布技艺主要分为刻板、刮浆、染色、刮灰、晾晒五个步骤。刻板即以刀为笔,将纹样刻于纸板,讲究笔断意连,以镂空标记白色花型。其后,将刻好的花板附在白布上,防染浆从纸板上刮过,镂空处的布面便贴上一层防染浆,在染色时方能不被上色。染完晾干后再以圆口菜刀刮去防染浆,白色花型显露。最后经过清洗晾晒,洗去浮色,一块雅致的蓝印花布才算是制成。

  对于从小就在染坊中长大的吴灵姝来说,这些工艺似乎该是趁手的。但其中的不易只有真正上手了才能体味,当中的门道,只有练出了手感才能窥见。比如,刮浆时将防染浆抹在纸板上,一个看似简单的动作,刚开始练习的吴灵姝却是不得其法,刮坏了不少纸板,既心痛又心急。破解之法何在?唯有勤练与坚持。

  耐住寂寞,不怕受挫,战胜放弃的念头,才能熬过日复一日反复练习的枯燥。历经手肿、起泡、出血等修炼之苦,走完三年多的磨练,全流程的技艺方能称得上合格,方能算是真正推开了蓝印花布精湛技艺的大门。而入门后的探秘是终身的修行。“这是一直在路上的过程,蓝印花布的历史那么长,需要学习的还有很多很多。”吴灵姝说道,带笑的眼中流露着坚定。

  也是在日日研习中,吴灵姝愈加感受到蓝印花布的独特韵味。蓝印花布纹样的鲜活正是源于手工,这是机器无法达到的。手工刻板的每一次下刀,都是匠人“铸魂”的一步。同样的花纹,不同人刻出来的气质并不统一,同一人每一次的呈现也不尽相同,细微处的调整皆为匠人情思的写照。再言冰裂纹,其千变万化的美亦是在手工操作中形成。刮浆后,防染浆在阴干的过程中自然形成裂纹,染液便在染色时随着裂缝渗入,生出美丽冰纹。每一份冰纹都可谓独一无二,堪称蓝印花布的灵魂。

  初心不忘,锐意出新

  在打磨技艺的同时,吴灵姝也在积极寻求创新,期望让蓝印花布再次走进人们的生活中,让现代人感受蓝印花布的美好。颜色上,不囿于蓝白两色,通过改变晕染次数,丰富了由浅到深的色系。材质的改变则是另一个重要的突破口,在轻薄的真丝、厚重的羊绒等材质上的探索均有成功,打造的创新产品也赢得了年轻消费者的喜爱。

  对于吴灵姝的创新,吴元新在赞赏的同时,更为操心的是拉住传统的这根“风筝线”。“我就像放风筝一样,我要把传统的这根线拉住了。这样,无论女儿怎样在时尚与现代中放飞,都不会丢了根。”

  父亲的殷殷教诲,吴灵姝记得真切,亦有自己的思考。刻了花板,用上黄豆粉、石灰粉等去刮浆,再用蓝草染色,便是蓝印花布了吗?传承人该坚守的不止是手工的外在形貌,更为重要的守住蓝印花布的神韵与精髓。点线面结合是蓝印花布的特色,如何将点线面通过排列、节奏、韵律等手法做好组合,展现东方之美,是吴灵姝乐于钻研与坚持探索的方向。“传承人先把技艺守好,才能去创新,这样的创新才有意义,这样的创新才不离本心。”

  青出于蓝,芳芽又生

  传承之路不止是守艺与创新,更有蓝印花布的收集、保护与研究,各地传承人群的培养,蓝印花布文化遗产的宣传与发扬……这条长路,吴灵姝是同家人相伴而行的。95岁的祖母演示起纺纱织布依然娴熟,父亲更是一路前进的严师益友。在家庭氛围的感染下,丈夫倪沈键放弃金融工作,毅然加入到蓝印花布的传承中,同吴灵姝相携相助。随着两名女儿的出生,蓝印花布的守护更添新生力量。

  “两个女儿的名字是文化学者冯骥才先生起的,一个叫抒染,一个叫美印,既是抒发对祖国美丽印染大业的情感,也是对她们的美好寄托。”今年正值虎年,吴灵姝的大女儿刻了老虎纸板。这一纹样也受到许多小朋友的喜爱,他们纷纷用这一纸板,做了老虎纹样的蓝印花布方巾。新的蓝白花种已在更广阔的天地间播撒、生长。

  (本期编导/姜弘毅 张紫珺文稿/张紫珺摄像/李慧 彭超剪辑/李姗)

  中国互联网发展基金会中国正能量网络传播专项基金资助支持

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 现实版逆袭:废柴青年变身救人英雄

  • 中安资产公司“四送一服”化解无为电线电缆产业风险

独家策划

推荐阅读
凤凰快三关晓彤出游连头发丝都防晒
2023-06-11
凤凰快三史玉柱耗时3年的305亿巨额收购为何频遭"唱黑"
2024-02-02
凤凰快三林志玲格子衫清爽十足
2024-02-05
凤凰快三 朴有天首次承认吸毒事实,此前曾多次坚决否认
2023-10-25
凤凰快三新华全媒+丨世界湿地日:如果湿地“精灵”会说话
2023-09-27
凤凰快三疯牛横冲直闯伤2人 民警果断一枪击毙(图)
2023-06-13
凤凰快三12天11板股价疯涨199% “大妖股”兴齐眼药底气何来
2023-09-14
凤凰快三五一小长假小客车高速免费
2023-09-05
凤凰快三苏珊·米勒:土星进入摩羯未来两年12星座运势
2023-09-07
凤凰快三 三里屯流行的高跟一字带凉鞋有多神奇?
2023-11-22
凤凰快三季节交替当心脾胃不和
2023-09-04
凤凰快三预防头发变白一秘方搞定
2024-02-27
凤凰快三哪四类女人易遭到老公的背叛
2023-07-04
凤凰快三国产良心《绅探》打了多少伪烧脑剧的脸?
2024-01-12
凤凰快三实拍:懒熊护崽与老虎对峙缠斗
2024-02-15
凤凰快三废物利用的艺术太有创意
2023-10-31
凤凰快三南京一座迷雾笼罩的“山”
2024-02-18
凤凰快三北大人民医院通州院区主体已封顶 今年开诊!
2023-05-26
凤凰快三北京西城区2019幼升小小升初政策出炉!8大变化独家解读
2023-10-21
凤凰快三 盒马被曝水产品含抗生素,食品中的抗生素会带来哪些危害?
2023-12-26
凤凰快三寡妇桥传说:不一样的寡妇不一样的桥
2023-07-20
凤凰快三2019版第五套人民币出炉 来看看长啥样(图)
2023-09-02
凤凰快三央行:新版征信报告对个人影响变化不大
2024-01-31
凤凰快三 种植牙使用寿命是多久
2023-12-18
加载更多
凤凰快三地图